
Sprinter: Speeding Up High-Fidelity Crawling of the Modern Web

Ayush Goel1 Jingyuan Zhu1 Ravi Netravali2 Harsha V. Madhyastha3

1University of Michigan 2Princeton University 3University of Southern California

Abstract—Crawling the web at scale forms the basis of many

important systems: web search engines, smart assistants, gener-

ative AI, web archives, and so on. Yet, the research community

has paid little attention to this workload in the last decade. In

this paper, we highlight the need to revisit the notion that web

crawling is a solved problem. Specifically, to discover and fetch

all page resources dependent on JavaScript and modern web

APIs, crawlers today have to employ compute-intensive web

browsers. This significantly inflates the scale of the infrastruc-

ture necessary to crawl pages at high throughput.

To make web crawling more efficient without any loss of

fidelity, we present Sprinter, which combines browser-based

and browserless crawling to get the best of both. The key to

Sprinter’s design is our observation that crawling workloads

typically include many pages per site and, unlike in traditional

user-facing page loads, there is significant potential to reuse

client-side computations across pages. Taking advantage of this

property, Sprinter crawls a small, carefully chosen, subset of

pages on each site using a browser, and then efficiently identifies

and exploits opportunities to reuse the browser’s computations

on other pages. Sprinter was able to crawl a corpus of 50,000

pages 5x faster than browser-based crawling, while still closely

matching a browser in the set of resources fetched.

1 INTRODUCTION

To make the most of the enormous trove of information avail-

able on the web, all of us today rely upon a range of ef-

forts. Web search engines help users find pages relevant to

their needs. Data from the web serves as input to smart as-

sistants such as Siri and Alexa, and is used to train genera-

tive AI models that can answer our questions. Web archives

store repeated snapshots of web pages to document changes

over time and to preserve the content of deleted pages. Re-

searchers continually study the web to help improve its per-

formance and security.

A key enabler for all of the above is a capability that

we take for granted today: the ability to crawl the web at

scale. Web crawlers have traditionally crawled a page by

first downloading the page’s HTML, and then recursively

fetching all embedded links to images, CSS stylesheets,

scripts, etc. If one deploys many such so called static

crawlers [32, 28] across a fleet of machines, the rate of crawl-

ing is limited by the network bandwidth of each machine.

Given that web crawlers have existed for over three

decades, why revisit this topic now? Because, static crawlers

no longer suffice. On today’s web, the URLs of many of the

resources on a page are determined at runtime, rather than

being statically embedded in the page’s source. To discover

and fetch such resources, modern “dynamic” crawlers [5,

Dynamic Sprinter

Static

Better

0

25

50

75

100

0 25 50 75 100
Crawling throughput per server (pages/s)

F
id

e
lit

y
 (

%
 o

f
b
y
te

s
)

Figure 1: Tradeoff between fidelity and performance with dif-

ferent crawlers.

2, 4] leverage web browsers such as Chrome, Firefox, or

Edge. However, due to the compute overheads associated

with JavaScript (JS) execution and with browsers in general,

the rate at which one can crawl pages drops by an order

of magnitude relative to static crawling (Figure 1). Con-

sequently, dynamic crawlers need to be deployed across a

much larger number of servers in order to sustain the same

crawling throughput as that feasible with static crawlers.

Thus, anyone seeking to crawl the web today has to make

do either with the poor performance of dynamic crawlers or

the incompleteness of static crawlers. Unfortunately, there

is no easy fix. One could try to augment a static crawler

with a lightweight JavaScript execution engine, but keeping

up with constantly evolving web APIs is a challenge best

left to the developers of widely used browsers. On the other

hand, proposals that attempt to mitigate the impact of client-

side web computations on user-perceived web performance

have little utility in the context of crawling. For example,

overlapping the browser’s computations with its network ac-

tivity [41, 24, 56] or parallelizing the browser’s execution

of JavaScripts [40] can reduce page load times, but crawl-

ing throughput remains unchanged since the total amount of

client-side computation is the same.

We address this undesirable status quo with Sprinter, a

new crawler which judiciously combines browser-based and

browserless crawling. Sprinter crawls pages at a much faster

rate than dynamic crawlers while matching them in the re-

sources fetched. Our main observation is that large-scale

web crawling workloads typically include many pages from

each site and there is significant potential to reuse client-side

computations across pages (§3.1).To exploit this property,

our design of Sprinter is based on three key principles.

First, when Sprinter crawls a page using a browser, it

strives to minimize the amount of JS code executed. For

every script file on a page, Sprinter attempts to reuse the

browser’s execution of that file on a previously crawled page.

In user-facing page loads, execution of the same file is sel-

dom exactly identical across multiple pages. In contrast,

Sprinter can reuse JS execution at such a coarse granularity

because it can skip executing a JS file as long as the URLs of

the resources that file would fetch match those fetched dur-

ing a prior execution of that file.

Second, even if none of the JS files on a page are exe-

cuted, crawling the page with a browser imposes significant

compute overhead. Therefore, on any site, Sprinter crawls

the vast majority of pages on the site without a browser. To

realize browserless crawling that does not sacrifice fidelity,

we implement a lightweight page instrumentation framework

that tracks the web APIs used on any page without sup-

port for executing these APIs. When it crawls a page with-

out a browser, Sprinter uses this instrumentation to identify

whether it can safely reuse JS executions from pages that it

previously crawled with a browser.

Lastly, to maximize the fraction of pages that can be

crawled without a browser, Sprinter crawls the pages on a

site in a carefully chosen order. For any given site, Sprinter

efficiently identifies a subset of pages such that most of the

scripts seen on other pages are fetched as part of this sub-

set. Sprinter crawls these pages first using a browser and

captures the effects of JS executions. Most of the remaining

pages can then be crawled without a browser, since Sprinter

can identify all resources to be fetched on those pages with-

out executing any JS code or web APIs.

We used Sprinter to crawl a corpus of 50,000 pages spread

across a diverse collection of 100 sites. It offered a 5x

speedup in crawling throughput compared to existing dy-

namic crawlers. When we recrawled the same corpus a week

later, the rate at which Sprinter crawls pages improved by a

further 78%. Importantly, Sprinter preserves almost all re-

source fetches issued by a browser-based crawler, and it is

compatible with legacy web servers. Sprinter’s source code

is available at https://github.com/goelayu/Sprinter.

2 BACKGROUND AND MOTIVATION

We begin by describing common web crawling workloads

and quantifying the limitations of existing strategies for sup-

porting these workloads.

2.1 Target workloads

Web crawlers take as input a seed list of URLs to pages that

need to be crawled. The input configuration to the crawler

can specify a range of options such as timeout per page,

retry policy, politeness constraints (i.e., time gap between

crawls of pages on the same site), and whether other pages

discovered while crawling the seed list should also be recur-

sively crawled. Some crawlers provide the option of saving

page screenshots [2] and triggering user interactions (e.g.,

scrolling or clicking) on rendered pages [4]. In this work, we

focus on supporting the common need for crawlers to save

the content of resources that are fetched on every page that

is crawled. To not make any assumptions about what the

crawls will be used for, we aim to fetch and save all page re-

sources requested by a browser such as Chrome, rather than

a subset that may suffice for a particular use case.

We focus on supporting workloads where pages are

crawled from a large number of sites. This is the case in

any large-scale system that relies on web crawls, e.g., to sup-

port web search, ChatGPT, and Siri, their providers aim to

crawl the entire web. Even in more focused crawls, it is

common to crawl many sites and many pages in each site.

For example, after every presidential term in the US, the

Internet Archive captures a snapshot of 1.3 million govern-

ment websites, crawling roughly 700 pages on average per

site [14]. Similarly, research studies attempting to under-

stand the web’s security vulnerabilities [44] have crawled

roughly 2500 pages per site. When pages are crawled from a

single site (e.g., a research study of pages on Facebook), the

rate at which pages can be crawled is constrained by the rate

limits imposed by the site being crawled.

2.2 Shortcomings of static crawling

As mentioned earlier, web crawling has traditionally relied

on static crawlers, which identify all the resources to fetch

on every page by extracting links embedded in the page’s

source. To demonstrate and quantify why static crawlers

are now insufficient, we compile Corpus10k, a collection of

10,000 pages comprising 100 randomly sampled pages from

each of 100 sites: roughly 33 sites chosen at random from

three ranges – [1, 1000], [1000, 100k], and [100k, 1m] –

from Alexa’s site rankings. This corpus spans a diverse col-

lection of sites and is representative of real-world crawls in

that it includes a large number of pages per site crawled.

On a server which has a 16-core 2.1 GHz Intel Xeon CPU,

a 1 Gbps network connection, and a 500 GB SSD disk,

we crawl every page in Corpus10k using a custom crawler

which loads every page in Google Chrome but also fetches

all URLs, both absolute and relative, that are embedded in

text-based resources (i.e., HTML, CSS, and JS). We record

all responses using a web record and replay tool [9]. We

then separately crawl every page from our recorded copy

once using Chrome and once using our custom static crawler

(which mimics wget2 [12], a state-of-the-art static crawler),

with network caching enabled in both cases, i.e., across all

pages, each unique resource was only fetched once. Com-

paring the two types of crawlers in this manner eliminates

any differences that might arise due to server-side non-

determinism [36].

First, the “Dynamic - Static” line in Figure 2 shows that

a static crawler fails to fetch 32% of bytes on the median

page. This is because, on a modern web page, which re-

sources are served to a client are often determined only when

the client executes the scripts included on the page. Since a

static crawler can identify the URLs of a page’s resources

https://github.com/goelayu/Sprinter

0.00

0.25

0.50

0.75

1.00

10
0

10
1

10
2

10
3

% of bytes fetched by Dynamic

C
D

F
 a

c
ro

s
s
 p

a
g

e
s

Dynamic − Static
Static − Dynamic

Figure 2: Compared to a dynamic (i.e., Chrome-based)

crawler, a static crawler both fails to fetch some resources and

fetches many additional resources. Distribution shown is over

10,000 pages spread across 100 sites. Note logscale on x-axis.

var EA = fetch(“crazyegg.com/usnews.com.json”)
// json contents: {

script_url: ”crazyegg.com/commonscripts/759.js”
}

const n = document.createElement("script");
n.src = EA.script_url;
const r = document.getElementsByTagName("script")[0];
r.parentNode.insertBefore(n, r);

9297.js

utag.js

Figure 3: Snippet of JS code from www.usnews.com. The

browser first fetches a JSON file, and then requests a JS file

referenced inside the JSON.

only by parsing the source code of the page, it is blind to

such resource fetches. Figure 3 shows an example.

Second, Figure 2’s “Static - Dynamic” line shows that,

on the median page, the static crawler fetches 93% more

bytes than fetched by Chrome; on some pages, this over-

head is as high as 200x. These extra resource fetches arise

because, within a single page, web developers often embed

resources that are applicable across a large number of client

device types, expecting the client browser to download the

resources applicable to it. Examples include multiple reso-

lutions of the same image, or different font files for the same

HTML text. To enable the client to pick the appropriate ver-

sion of any particular resource, modern pages either use me-

dia queries [17] or CSS selectors [11]; see Figure 4 for exam-

ples. A static crawler is unable to evaluate media queries and

does not know which CSS selectors are dynamically applied

during JavaScript execution. Therefore, it offers no control

on whether to fetch only resources applicable to the machine

used for crawling a page or to fetch every resource that might

be requested in any load of the page.

2.3 Compute overheads of browser-based crawling

Given the shortcomings of static crawlers, state-of-the-art

web browsers are often employed to crawl pages [2, 5, 4].

We observe that Chrome is the most widely used in browser-

based crawling frameworks because of its better support for

web APIs [18] and for automation capabilities [8]. For this

<picture>
<source srcset=”ct.img/600x338” media=“(min-width:768px)”>
<source srcset=”ct.img/400x225” media=“(min-width:0px)”>

</picture>

.icon-calendar
{font-family: {src: url(“fonts/icomoon.woff”)}}

index.html

style.css

if (body.firstChild.hasAttr(“data-widget”)){
var inode = document.createElement(“i”);
inode.class = “icon-calendar”;
body.firstChild.insertBefore(inode)

}

widget.js

Figure 4: Code snippet from www.chicagotribune.com

showing the two causes for a static crawler’s extra resource

fetches. (a) It will fetch both versions of the ct.img image,

irrespective of the width of the client device’s display. (b) It will

fetch the font file fonts/icomoon.woff, whether or not the

CSS selector .icon-calendar is used in the rest of the page.

The CSS selector is only added if the HTML code contains a

data-widget attribute.

0

25

50

75

100

Static Dynamic Dynamic w/o
script execution

R
e

s
o

u
rc

e
 u

ti
liz

a
ti
o

n
 (

%
) CPU Network Disk

Figure 5: A comparison of average CPU, network, and disk

utilization by static and dynamic crawlers.

reason, in the rest of this paper, we refer to Chrome1 when

discussing overheads of browser-based crawling.

We observe that the average number of pages that we

could crawl per second with Chrome was only 12% of that

achievable with the static crawler. The cause for this signifi-

cant drop in crawling throughput is shown in Figure 5, which

plots the average utilization of CPU, network, and disk with

either crawler. Unlike the static crawler, which was limited

by network bandwidth, the dynamic crawler ended up satu-

rating all CPUs. If we were to use a 10 Gbps network, more

than 5000 CPU cores would be necessary for the dynamic

crawler to fully utilize the network, which is infeasible to

accommodate on a single server.

We break down the reasons behind Chrome’s high CPU

usage using data from Chrome’s in-built profiler [7]. We find

three primary contributors: 1) the JavaScript engine, which

is responsible for parsing and interpreting JS code, 2) inside

the rendering engine, computation of the layout tree which

1We use Chrome in a headless mode as it is known to be more compute

efficient [49, 21].

www.usnews.com
www.chicagotribune.com

specifies on-screen positions for page content, and 3) time

spent inside Chrome’s internal code, into which the profiler

has no visibility. Together, these three sources of computa-

tion account for 96% of the compute delays on the median

page, with JavaScript execution alone accounting for about

half. Given the complex inter-dependencies between these

three tasks, none of them can be simply eliminated to reduce

Chrome’s computation overheads. For example, JavaScript

execution queries layout information when scripts inspect

the position of elements on the screen.

2.4 Minimizing browser’s computation delays

The observation that the amount of client-side computation

needed to load a web page has increased in recent times is

not new. A large body of prior work [57, 42, 40, 41] has

focused on addressing the impact of this overhead on user-

perceived web performance. However, those solutions have

little utility in the context of web crawling for two reasons.

First, many proposals for reducing the impact of client-

side computation on page load times aim to either increase

the overlap between the browser’s use of the client CPU and

network [41, 46] or parallelize the browser’s execution of

scripts on a page [40]. Such solutions can reduce the end-

to-end latency of individual crawls, but the total amount of

computation that the crawler needs to perform, and thus the

crawling throughput, will remain unchanged.

Second, others [42, 57, 1] rely on server-/proxy-side sup-

port to ship processed versions of pages so as to minimize the

amount of JavaScript that clients need to execute. Notwith-

standing the fact that such solutions are not usable until they

are adopted by millions of domains, we estimate their best

case utility by crawling pages in Corpus10k with script exe-

cution in Chrome disabled. A comparison of “Dynamic” and

“Dynamic w/o script execution” in Figure 5 shows that the

latter marginally reduces the gap between CPU and network

utilization. However, client-side computation remains a sig-

nificant bottleneck, thereby limiting crawling throughput to

still be only 17 pages per second.

Alternatively, one could attempt to build a lightweight

browser from scratch which only supports crawling, but does

not enable users to visit web pages, i.e., has no graphical

interface, does not support user interactions, etc. However,

significant engineering effort would be required to constantly

keep up with updates in HTML, CSS, and JavaScript APIs.

For example, when we load the landing pages of the top 1000

Alexa sites using a version of Chrome from five years ago

(v65), it fails to fetch 16% of the resources fetched by the

most recent version of Chrome (v114). This is because cer-

tain JavaScript APIs that are commonly used today were not

supported by Chrome v65, e.g., support for optional chain-

ing [15] was only added in v80. It would be best for web

crawlers to rely on widely used browsers which are well-

maintained, instead of having to replicate the effort in a

lightweight browser dedicated to crawling.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Fraction of JS files that are shared

C
D

F
 a

c
ro

s
s
 s

it
e

s Same source + same fetches
Same source

Figure 6: For the sites in Corpus10k, most JavaScript files ap-

pear on multiple pages and a script typically fetches the same

resources on all the pages which include that script.

3 OVERVIEW

The takeaway from the previous section is that, today, opera-

tors of web crawlers are stuck with having to choose between

two less than ideal options: use static crawlers and miss out

on some resources, or make do with the poor performance

of dynamic browser-based crawlers. We seek to resolve this

quandary by enabling high-fidelity crawling at high through-

put. We do so while respecting two constraints. First, we

make sure to crawl all the resources on a page that a browser

would fetch, but make it configurable whether to crawl only

the resources relevant to the machine on which the crawler

is executed. Second, to make our crawler compatible with

the legacy web, we require no changes to web pages and the

servers that host them.

3.1 Observations and approach

The high-level observation that guides our approach is that,

on any site, there typically is significant overlap across pages

both in the JavaScript code that they include and JavaScript-

initiated fetches when a browser loads them. Figure 6

demonstrates this property on the pages in Corpus10k.

First, for every site, out of all the unique JS files seen on at

least one of the 100 pages on that site, we compute the frac-

tion which are included in multiple pages; here, we consider

the combination of a file’s URL and a hash of its source code

to be a unique identifier for a file. The “Same source” line

plots the distribution of this fraction across the 100 sites in

our corpus. For the median site, 72% of JS files were shared

across multiple pages.

Next, we examine the likelihood that a JS file fetches the

same set of resource URLs when it is executed on differ-

ent pages. For this, we consider a script file’s execution

uniquely by the file’s URL, the hash of its source, and the

set of URLs it fetches. When we consider only those exe-

cutions which result in at least one fetch, the “Same source

+ same fetches” line in Figure 6 shows that, on the median

site, 65% of unique file executions – at least with respect to

resource fetches – are repeated across multiple pages.

The takeaway from these observations, coupled with the

property that web crawling workloads typically crawl a large

number of pages per site (§2.1), is that there exists signifi-

Store/lookup

signatures
Pages to crawl

dynamically

Phase 1: Static crawl

Download only

statically linked

JS files to compute

set cover

Phases 2,4: Dynamic crawl

Load pages

while executing

instrumented JS

Page URLs

Phase 3: Static crawl

Crawl pages

where all JS

can be skipped

Pages to crawl statically

Compute

cache

Pages to recrawl dynamically

Lookup

signatures

Figure 7: Sprinter crawls the pages on any site in four phases which alternate between browserless and browser-based crawling.

cant redundancy in a dynamic crawler’s execution of JS files.

When the browser used by the crawler executes a JS file that

it had previously executed on a different page on the same

site, the numbers from Figure 6 indicate that the same set

of resources are often requested as on the previous page.

The browser’s network cache will ensure that it does not

have to waste network bandwidth in re-downloading those

resources. But, the browser will still execute every JS file in

its entirety just to identify these resources.

To improve crawling performance by reducing the

crawler’s computations, our approach aims to first eliminate

redundant execution of JS files. Specifically, whenever our

crawler, Sprinter, crawls any page, it skips executing a JS file

if a) it has already executed that file while crawling a differ-

ent page on the same site, and b) it identifies that, if executed,

the file will fetch the same resources as it did on the pre-

viously crawled page. However, as observed earlier (§2.4),

a browser imposes high compute overhead even when it is

used to load pages with execution of scripts disabled. There-

fore, second, on pages where it can reuse the executions of

all JS files, Sprinter does not even employ a browser to crawl

those pages. Put together, Sprinter uses a browser to crawl

only a small subset of pages in each site and minimizes the

browser’s execution of JavaScripts.

3.2 Challenges

Realizing the above approach requires us to answer the fol-

lowing three questions.

• Whenever a script appears on multiple pages, it is not

guaranteed to initiate the same resource fetches on all

pages; in our corpus, 48% of repeated scripts had at least

one execution where they fetched a different set of URLs

than what they fetched in their first execution. Prior to ex-

ecuting a script, how can Sprinter efficiently identify that

the script’s execution will match a prior execution, and it

is safe to skip executing it?

• Classic memoization involves storing the results of ex-

ecution and using them to skip future executions of the

same code in the same runtime context. In contrast, when

Sprinter crawls a page without a browser, how can it reuse

the browser’s prior computations on other pages? Mim-

icking the entire browser runtime will significantly in-

crease complexity and degrade performance.

• Finally, on each site, which subset of pages should

Sprinter crawl using a browser? To minimize Sprinter’s

compute overheads, it is key that the subset be small.

However, for Sprinter to crawl all the remaining pages on

the site without a browser, we must ensure that the script

executions on the pages crawled using a browser suffice to

skip executing all the JS files on the remaining pages.

4 DESIGN

As shown in Figure 7, Sprinter crawls a corpus of pages

from any particular website in four phases. In the first

phase, Sprinter identifies the subset of pages that need to be

crawled with a browser. It crawls those pages in the second

phase while skipping JS executions whenever feasible. Next,

Sprinter crawls the remaining pages on the site using its aug-

mented static crawler. Finally, it recrawls some of the pages

from the third phase using a browser. We present our design

of Sprinter by first describing its operation in phases 2 (§4.1)

and 3 (§4.2), and lastly, phases 1 and 4 (§4.3).

4.1 Memoizing JavaScript execution

Sprinter maintains a compute cache in order to take advan-

tage of the opportunities to reuse JS executions across the

pages on a site. On any page that Sprinter crawls with a

browser, prior to executing JS on the page, the browser looks

up the compute cache to determine whether the execution

can be skipped. Upon a cache miss, the browser executes the

JS code and logs a summary of its execution in the compute

cache, for use on other pages.

Execution signatures to enable reuse. When JS code runs

within a browser, it can read from or write to the JavaScript

heap and HTML DOM object. It can also read the return

values from various web APIs. Therefore, to enable reuse of

JS executions without violating correctness, we associate the

execution of every block of JS code with a signature which

includes the values at the start of executing that block of code

for all state from the heap or DOM that is read within that

block. When the browser executes any block of JS code,

its execution is guaranteed to result in the same externally

visible effects (i.e., writes to the DOM and heap, and URL

fetches) as a prior execution which had the same signature, if

the block does not invoke any non-deterministic APIs (e.g.,

Date, Random or Performance). Figure 8 shows an ex-

ample block of code and the corresponding signature.

var gKey = window.grumi.key; // “bfd2-4adc”
fetch(`https://www.geoedge.com/${gKey}/grumi-ip`)
var NYTD = {PageViewID:‘mubjhislka7867’};
window.NYTD = NYTD;

{
Reads: [“window.grumi.key”,”bfd2-4adc”],
Writes: [“window.NYTD”,”{PageViewID:‘mubjhislka7867’}”]
Fetches: [“https://www.geoedge.com/bfd2-4adc/grumi-ip“]

}

vendor.js

Signaturevendor.js

Figure 8: JavaScript code from www.nytimes.com which

reads a global variable using the window object and, based

on the property read, fetches a URL. It also writes to the win-

dow object. Signature for this includes the global state read and

written (both the keys and the values) and the fetches initiated.

However, to construct code signatures, modern browsers

provide no APIs to extract the necessary runtime informa-

tion about JavaScript execution. To remedy this, Sprinter

uses a custom JS instrumentation framework, similar to the

ones used in prior work [31, 40, 42]. This instrumentation

framework runs inside a man-in-the-middle (MITM) proxy

which sits in front of the browser. For every new JS file

requested by the browser, the proxy statically analyzes the

code in the file and rewrites it by injecting code that tracks

the state and APIs that are accessed when the file is executed.

Sprinter’s instrumentation tracks variables on the heap which

are in either 1) the global scope, which is accessible using

the window object, or 2) the closure scope, which is created

within a function but persists after the function’s execution if

there exists a nested function declared in the same enclosed

scope. For the DOM object, Sprinter tracks all APIs that

can read from (e.g., getElementById) or write to (e.g.,

appendChild) the DOM.

Once the browser finishes loading a page, Sprinter’s in-

jected JS code compiles signatures for the scripts on the page

and stores them in the compute cache which is co-located

with the proxy. These signatures include both the above-

mentioned information needed to identify the opportunity

for reuse, and the writes to the heap and DOM that need to

be executed when the corresponding code is skipped, along

with any fetches initiated; see Figure 8. When a previously

cached JS file is fetched in future page loads, the proxy em-

beds stored signatures for the code in this file directly into

the file. When processing each JS file, the browser uses the

embedded signatures to determine if any code within the file

can be skipped.

Granularity of JS execution reuse. Given our results from

§3.1, it is natural to try and reuse the browser’s JS executions

at the granularity of entire files, i.e., prior to processing any

script file, the browser uses cached signatures for that file to

determine whether to skip all the code in the file or execute

all of it. However, as shown in the “Full signature” line in

Figure 9, the cache hit rate is pretty poor. On the median site

in Corpus10k, only 40% of JS file executions can be skipped.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Fraction of JS file executions that are skipped

C
D

F
 a

c
ro

s
s
 s

it
e

s

Full signature
Trimmed signature
Oracle

Figure 9: Cache hit rate for JavaScript files that initiate fetches

for other URLs.

To improve the hit rate, our key insight is that, unlike in

user-facing page loads, we do not need to restrict Sprinter’s

skipping of a JS file’s execution only when it is guaranteed to

execute in a manner exactly identical to a previous execution

of the same file. Rather, as long as we can guarantee that the

code will fetch the same resource URLs, we can skip it. A

crawler does not need to preserve other aspects of JavaScript

execution, such as visual changes by modifying the DOM or

functional changes by adding event handlers that allow users

to interact with the page.

This observation enables us to trim file signatures and only

include state that influences resource fetches. To identify

this state, we turn to dynamic taint tracking [47]. Our in-

strumentation of any JS file marks all statements that initiate

URL fetches (such as XMLHTTPRequest.send) and all

DOM nodes with a src property as sinks. We also mark all

control-flow statements as sinks. At the end of any file’s ex-

ecution, we include in the file’s signature only those reads

which propagate values to any of the sinks.

The “Trimmed signature” line in Figure 9 shows that trim-

ming the signatures stored in Sprinter’s compute cache im-

proves the cache hit rate on the median site to over 80%.

This is because a large fraction of reads performed by JS on

the web does not influence the set of URLs fetched. Further-

more, we see that the cache hit rate with Sprinter is close

to the best achievable hit rate, which we obtain via post-

hoc analysis of JS executions to identify when the set of

URLs fetched matched a prior execution. The gap between

“Trimmed signature” and “Oracle” is due to Sprinter’s con-

servative tracking of all control-flow dependencies, instead

of only the ones that influence the URLs fetched.

4.2 Statically crawling pages

So far, we have discussed how Sprinter reuses execution

across pages. However, as mentioned in §2.3, JS execution

is only a part of the total compute overhead of web browsers.

To maximize Sprinter’s performance, we now discuss how it

crawls pages without a browser in phase 3.

Crawling without a browser. We observe that the primary

utility of crawling a page within a browser is its implemen-

tation of the JavaScript heap and the DOM object, and its

www.nytimes.com

support of various APIs. However, if we are able to skip ex-

ecuting a file, we only need to compile the read state in its

signature, for which we need a log of all the writes performed

by previously executed or skipped JS files. We do not need

to apply these writes to the browser’s heap and DOM since

there are no user interactions at the time of crawling.

Based on this insight, Sprinter’s static crawler maintains a

shadow heap, which is a key-value map from the properties

of the heap to the corresponding values. It also maintains

a shadow DOM, which it constructs by parsing the page’s

HTML at the start of every page load and offers the same

read and write APIs as the ones provided by the browser.

For every page that it statically crawls in phase 3, Sprinter

fetches the page’s HTML, extracts all embedded resource

URLs, and recursively fetches them. For every JS file

fetched, the static crawler looks up the shadow heap and

DOM to construct the file’s signature. Upon a successful

cache hit, Sprinter logs the writes included in the file’s sig-

nature to the shadow heap and shadow DOM, and issues any

resource fetches included in the signature. It repeats this pro-

cess until all resources on the page have been fetched. When-

ever there is a cache miss for a JS file, the static crawler

is unable to execute the file, and it defers these pages for

browser-based crawling in phase 4 (§4.3).

Handling additional fetches. Crawling pages as de-

scribed above has the downside of fetching additional re-

sources that a browser would not (as described in §2.2). For

Corpus10k, this increases the total number of bytes fetched

by 3.5x. Unlike during dynamic crawling, when the net-

work is severely underutilized (Figure 5), these additional

fetches significantly degrade overall throughput when crawl-

ing without a browser.

If the input configuration to Sprinter specifies that only

the resources relevant to the machine executing the crawler

be downloaded, its static crawler does so by leveraging the

browser’s processing of pages crawled earlier in phase 2.

First, during every page load executed within a browser,

Sprinter adds to its compute cache the media queries eval-

uated and the corresponding value (true or false). For any

media query encountered during browserless page loads, the

static crawler fetches the corresponding URL if the compute

cache either returns a true value or does not contain any entry

for that media query. Similar to our observation of similarity

in JS executions across pages, we find that, for the median

site in Corpus10k, 92% of all media queries occur on more

than one page. Second, the static crawler uses the cached

signatures for JS files to identify which selectors were ap-

plied when the browser executed those files. It fetches only

the URLs contained within these selectors.

4.3 Scheduling page crawls

Given the high compute overhead of loading pages in a

browser and extracting signatures, we must minimize the

number of pages that Sprinter crawls using a browser. How-

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
% of pages in set cover / % of all JS files covered by

set cover

C
D

F
 a

c
ro

s
s
 s

it
e

s

Pages
JS

Figure 10: Approximate set cover captures a large fraction

of JS files (“JS”), while the number of pages in the set cover

(“Pages”) are a small fraction of the total corpus size.

ever, Sprinter can crawl a page without a browser only if it

is able to skip executing every JS file on that page. Hence,

the subset of pages on any site that Sprinter crawls without

a browser in phase 3 should ideally be such that all of the JS

files that appear on any of these pages also appear in at least

one of the pages previously crawled with a browser in phase

2. This does not guarantee that the static crawler will find a

compute cache entry with a matching signature for every JS

file, but at least makes it possible.

Need for scheduling. Since the set of JS files on any page is

not known apriori, Sprinter could use a browser to crawl the

pages on any site in a random order and switch to browser-

less crawling once the set of JS files converges, i.e., once

the union of JS files remains unchanged for n consecutive

pages crawled. But, we find that there is no value of n that

offers a good tradeoff between compute overheads and cov-

erage of JS files. For example, with n = 2, we would need to

crawl only 8% of pages on the median site in Corpus10k with

a browser, but only 49% of the JS files seen across all the

pages on this site appear on those pages. With n = 10, the

fraction of JS files covered by browser-based loads increases

to 82%; however, 38% of pages now need to be crawled us-

ing a browser.

Efficient identification of set cover. Sprinter takes an al-

ternate approach of carefully selecting which subset of pages

on each site to crawl using a browser in phase 2. Though we

cannot predict which JS files are on the remaining pages, we

leverage our finding from §3.1 that the same JS file often

fetches the same resources across pages of a site. Therefore,

instead of finding a subset of pages that includes all the JS

files used on that site, we find a subset that includes all the

JS files that are statically embedded in the remaining pages.

When these files are executed as part of the browser-based

loads, all the JS files that are dynamically fetched on this

site’s pages will likely be fetched and executed.

Thus, in phase 1, Sprinter crawls all pages using a static

crawler which only fetches the JS files that are directly

linked. We then have a set of JS files for every page, and

Sprinter computes the set cover, i.e., the subset of sets whose

union matches the union of all sets. Since computing the op-

0

25

50

75

100

Dynamic Server
Assisted Dynamic

Sprinter Static

C
ra

w
lin

g
 t

h
ro

u
g

h
p

u
t

(p
a

g
e

s
/s

)

0

25

50

75

100

Dynamic Server
Assisted Dynamic

Sprinter Static

%
 o

f
b
y
te

s
 f
e

tc
h

e
d

 b
y

D
y
n

a
m

ic

(a) (b)

Figure 12: Comparison of (a) crawling throughput and (b) fidelity of Sprinter against the three baselines.

Baselines. Our primary baselines represent existing static

and dynamic crawlers. For the static approach, we port

wget2, a popular open-source crawler, to be compatible with

our proxy-based setup; we verified that our static crawler

is identical to wget2 in terms of fetched content. For the

dynamic approach, we first considered three popular open-

source crawlers: Archivebox [2], Browsertrix [4], and Broz-

zler [5]. However, our benchmark results for each revealed

substantial performance drawbacks, likely because their pri-

mary goal was high fidelity, not necessarily high through-

put. Specifically, undue overheads stem from spawning a

new browser instance for each crawled page, using a CPU-

intensive MITM proxy, and relying on an outdated Chrome

automation framework. Therefore, we instead built an in-

house Chrome-based crawler that achieves 20%, 33%, and

250% higher throughput than Archivebox, Browsertrix, and

Brozzler, respectively. We verified that our custom crawler

fetches the same set of resources as Archivebox when used

to crawl the landing pages for the 100 sites in Corpus50k.

Our third baseline is representative of prior server-/proxy-

assisted solutions to reduce client-side computations in user-

facing page loads [42, 57]. To the best of our knowledge,

none of these systems are open sourced, and we are unaware

of any domains that have adopted these techniques. There-

fore, to evaluate Sprinter against this prior work, we consider

the best case outcome of these systems, where all client-side

JS execution is eliminated. We mimic such a scenario by

using our Chrome-based crawler to crawl a version of every

page wherein we include links to all the resources fetched by

JS files in the page’s main HTML. The browser loads this

modified HTML with JS execution disabled. We refer to this

baseline as server assisted dynamic crawling.

Metrics. We measure the crawling throughput of each

crawler as the average number of pages it can crawl per sec-

ond on a single server. For each crawler, we run a sufficiently

large number of instances so as to saturate either the CPU or

the network. We expect crawling throughput to linearly in-

crease with the number of servers. We run 5 trials for each

experiment and plot the median value, with error bars plot-

ting the minimum and the maximum values.

We consider the default goal of crawling to be to match

a Chrome-based crawler. Therefore, we measure the fidelity

offered by a crawler as the fraction of bytes it fetches of all

the resources fetched by Chrome when crawling the same

pages. When the goal is to crawl all resources that are rele-

vant to any client device, we measure fidelity as the fraction

of bytes fetched out of the union of the resources fetched by

the static and dynamic crawlers.

6.2 Throughput and Fidelity

6.2.1 Comparison with baselines

To compare Sprinter with the three baselines, we load pages

in Corpus50k using each of the four crawlers separately. We

monitor the resources fetched by each crawler on every page,

and the total time taken to finish crawling the entire corpus.

We also monitor the CPU and network utilization to identify

the bottleneck for each crawler.

Figure 12(a) plots the crawling throughput achieved with

each crawler, and Figure 12(b) shows the fidelity achieved.2

Static crawler achieves the best crawling throughput by far

of 96 pages per second. However, it misses out on 37% of

the bytes fetched by the dynamic crawler. In contrast, the

dynamic crawler could only crawl at a rate of 6 pages per

second. Since CPU utilization was at 100% throughout the

entirety of the crawl with the dynamic crawler, throughput

increased to 13 pages per second with the server-assisted dy-

namic crawler, which does not execute any JS.

Sprinter offers a significant additional speedup, improving

crawling throughput to 31 pages per second, a 5x improve-

ment relative to the dynamic crawler. Importantly, it does

so without requiring any changes to the web and while pre-

serving 99.2% of the bytes fetched by the dynamic crawler.

The 0.8% of bytes that went unfetched stem from the incom-

plete support for all web APIs in our current implementa-

tion. 50% of these unfetched bytes correspond to JavaScript

files, 27% to images, and 17% to HTMLs, with the remain-

ing accounted for by CSS and other content types. While

no resources went unfetched on the median page, the 90th

percentile page was missing 1 resource.

2We see no variation across runs in the resources fetched by each crawler

because all of our crawls rely on one snapshot of every page crawled from

the live web.

0

10000

20000

30000

40000

0

50

100

150

2 3 4
Phases

P
a

g
e

s

T
h

ro
u

g
h

p
u

t
(p

a
g

e
s
/s

)

pages throughput

Figure 13: Number of pages crawled during each of the dif-

ferent phases of Sprinter and the corresponding throughput

achieved in each phase.

P
h
a
s
e
 1

Phase 2 Phase 3 Phase 4

0

10000

20000

30000

40000

50000

400 800 1200 1600
Time (s)

P
a

g
e

s

Figure 14: A timeline of Sprinter’s crawl of Corpus50k, showing

the duration and number of pages crawled in each phase.

6.2.2 Throughput in each phase

Sprinter’s crawling throughput varies widely across phases.

Figure 13 plots the number of pages crawled in each phase

and the corresponding throughput. Whereas, Figure 14

shows a timeline of how Sprinter’s crawling of the pages in

Corpus50k proceeds over time.

• No page is fully crawled in phase 1; Sprinter only stat-

ically crawls the HTML files and embedded JavaScript

files for every page so as to identify the subset of pages

to be crawled with a browser in phase 2. Therefore, phase

1 finishes in 151s, the quickest of all four phases.

• Phase 2 is the slowest since Sprinter not only has to crawl

pages with a browser, but it also has to incur the overheads

of statically analyzing and rewriting every JavaScript file,

executing these instrumented files inside Chrome, and

processing the information it collects to generate and store

per-file signatures. In this phase, Sprinter crawls 1413

pages in 620s, resulting in a crawling throughput of a little

over 2 pages per second.

• Sprinter crawls the vast majority of pages in phase 3:

42497 pages in 316s. The average throughput of 135

pages per second in this phase is even higher than what

a static crawler can achieve (96 pages per second, as

shown in Figure 12(a)). This is because, unlike a static

crawler, Sprinter leverages browser-based execution of

media queries and CSS selectors in phase 2 to eliminate

fetches of resources relevant only for other client types.

• In Phase 4, Sprinter recrawls the remaining 6090 pages

0

10

20

30

40

Dynamic Dynamic+JS
reuse

Sprinter w/
random schedule

Sprinter

C
ra

w
lin

g
 t

h
ro

u
g

h
p

u
t

(p
a

g
e

s
/s

)

Figure 15: Incremental benefit offered by each of the tech-

niques used in Sprinter.

with a browser; about a quarter of these are because they

contained a JS file not executed in phase 2, and the re-

maining pages incurred at least one compute cache miss.

The crawling throughput of 11 pages per second in this

phase is better than in phase 2 because significantly fewer

JS files need to be instrumented.

At the end of phase 4, Sprinter’s compute cache had 3089

entries. The cache hit rate of 95.6% is the key enabler of

Sprinter’s throughput improvements as it could crawl a large

fraction of pages in phase 3, without requiring a browser. We

cannot further reduce the total crawl time by immediately

spawning a browser to crawl any page that incurs a cache

miss in phase 3 because both phases 3 and 4 are bottlenecked

by the CPU.

6.2.3 Contribution of techniques

To understand the performance benefits of each of the tech-

niques used in Sprinter, we incrementally add them to the

dynamic crawler and measure crawling throughput.

First, we evaluate the benefits of only using JS memoiza-

tion (§4.1) in Chrome, loading all pages in the corpus in a

random order. Figure 15 shows that “Dynamic+JS reuse”

provides a roughly 66% speedup over “Dynamic”.

Next, we crawl some of the pages with a browser and

the rest using Sprinter’s augmented static crawler (§4.2). To

determine which pages to crawl using a browser, we con-

sider the strawman approach (§4.3) wherein we transition to

browserless crawling once the union of JS files remains un-

changed for n consecutive pages. For Corpus50k, we observe

that n = 25 results in browser-based loads fetching the same

fraction of all JS files as that covered by Sprinter’s chosen

set cover. Even this unsophisticated combination of dynamic

and static crawling – “Sprinter w/ random schedule” in Fig-

ure 15 – roughly doubles the crawling throughput.

Finally, by efficiently choosing a carefully chosen subset

of pages to crawl with a browser, Sprinter crawls 88% fewer

pages using a browser in phase 2, resulting in a further 1.6x

improvement in throughput.

6.3 Sensitivity to crawling parameters

We evaluate the impact of the following three configuration

parameters on Sprinter’s crawling throughput: 1) the number

of pages crawled per site, 2) the time gap between repeated

0

5

10

15

100 200 300 400 500

Number of pages per site

%
 p

a
g

e
s
 i
n

 s
e

t
c
o
ve

r

Figure 16: Percentage of pages selected by Sprinter for

browser-based crawling as a function of number of pages

crawled per site. Bars show value for median site, with error

bars for the 25th and 75th percentiles.

Dynamic

0

10

20

30

40

10 20 100 500
Pages per site

C
ra

w
lin

g
 t

h
ro

u
g

h
p

u
t

(p
a

g
e

s
/s

)

Figure 17: Sprinter’s crawling throughput as a function of the

number of pages per site.

crawls, and 3) whether fetching all statically embedded re-

source URLs is desired.

6.3.1 Number of pages per site

The key to Sprinter’s high crawling throughput is its judi-

cious partitioning of pages, crawling a small fraction using

a browser and the remaining without. We examine how the

fraction chosen for browser-based crawling varies as a func-

tion of the number of pages being crawled per site. For 5

different values of the number of pages per site, Figure 16

plots this fraction for the 25th, median, and 75th percentile

sites. The percentage of pages in Sprinter’s carefully se-

lected “set cover” for the median site goes down from 6%

with 100 pages per site to 1.6% with 500 pages per site.

As a result, Sprinter is able to crawl a corpus of 10k pages

at an average rate of 15 pages per second. But, for a 50k

page corpus, its throughput improves to 31 pages per sec-

ond (Figure 17). Akin to how a static crawler benefits more

from network caching with more redundant resource fetches,

Sprinter’s compute cache enables it to reuse more client-side

computations when it crawls more pages per site.

On the flip side, lower the number of pages per site, lower

Sprinter’s throughput. Figure 17 shows that, with 10 pages

per site, Sprinter crawls 4 pages per second on average,

which is slower than the dynamic crawler. For Sprinter to

offer any benefit, we see that it must be asked to crawl at

least 20 pages per site. As a result, workloads that only crawl

landing pages of sites [10] will not benefit from Sprinter.

0

10

20

30

No signature Week old
signatures

Month old
signatures

C
ra

w
lin

g
 t

h
ro

u
g

h
p

u
t

(p
a

g
e

s
/s

)

Figure 18: Sprinter can crawl pages faster by leveraging sig-

nature information from previous crawls of the same corpus.

6.3.2 Repeated crawling

In many web crawling workloads, the same corpus of pages

is repeatedly recrawled. For example, a web search engine

must ensure that its search index reflects the latest content

on every page, and web archives must track changes to page

content over time. In such cases, Sprinter will crawl the en-

tire corpus in 4 phases the first time. However, when the

corpus is recrawled, Sprinter can directly jump to crawling

pages statically in phase 3, leveraging JS execution signa-

tures from the previous crawls. Pages where no compute

cache entry was found for at least one JS file would have to

be recrawled with a browser in phase 4.

To measure the crawling throughput with Sprinter when

the same corpus is crawled multiple times, we recrawl

Corpus10k once three weeks after our initial crawl, and again

a week later. We then use Sprinter in our replay setup

to crawl pages from our last copy of the corpus. We run

Sprinter once starting with an empty compute cache, once

using signatures from the crawl a week before, and once us-

ing signatures from the crawl a month before.

Figure 18 shows that reusing signatures from a week ago

improves Sprinter’s throughput by 78% as compared to when

no prior crawl existed. Reusing month-old signatures also

speeds up Sprinter. But, since the compute cache entries are

more stale and more previously unseen JS files are fetched,

the benefits are significantly lower.

6.3.3 Preserving static fetches

Thus far in our evaluation, we have considered the goal of

crawling to be to fetch the same resources on every page

as a dynamic crawler. However, in some cases, it might be

desirable to also crawl all resources that would be fetched by

a static crawler. For example, web archivists might want to

preserve all versions of every image on a page, so as to be

able to accurately render the preserved page irrespective of

the client device used to visit this page in the future.

In these cases, Sprinter can be configured to not elimi-

nate fetches using the techniques mentioned in §4.2. The re-

sultant throughput of Sprinter drops to 28 pages per second

which, though 9% lower than when it only tries to match

the dynamic crawler, is still 4.6x faster than the dynamic

crawler. This drop in throughput is because of Sprinter’s

static crawler having to fetch additional bytes in phase 3.

Chrome

version

Lightweight browser Sprinter

of APIs

added

of files

added/-

modified

of APIs

added

LOC

added

v108 4 41 1 9

v109 3 70 1 13

v110 4 58 1 6

v111 7 109 0 0

Total 18 278 3 28

Table 1: Comparison of number of APIs that need to handled

by Sprinter and a lightweight browser.

Note that the impact of this configuration option on

Sprinter’s throughput depends on the number of pages

crawled per site. With more pages per site, phase 3 is able

to achieve higher crawling throughput due to the benefits of

network caching.

6.4 Maintainability

Web APIs and their specifications are constantly up-

dated [38]. Web crawlers need to be correspondingly up-

dated over time to ensure that web pages using the latest

APIs are accurately crawled. Dynamic crawlers leveraging

web browsers such as Chrome and Firefox simply need to

update to the latest version of the browser, as these browsers

are well-maintained and constantly updated to support most

of the latest web APIs.

To get a measure of the effort that would be needed to

maintain Sprinter or a lightweight browser such as phan-

tomJS, we look at all the APIs added in the 4 most recent

versions of Chrome (v108 to v111). For each API, we manu-

ally read its specification. Only a subset of these would need

to be implemented by a lightweight browser designed for the

purpose of crawling, e.g., any API that takes effect only dur-

ing user interactions (such as webRTC APIs to enable video

conferencing or navigator.credentials API to enable se-

cure logins) would not have to be handled. Sprinter’s instru-

mentation of JS code would need to keep track of an even

smaller subset of APIs, only those which influence execu-

tion signatures, i.e., any API that can read from or write to

the global state.

Table 1 compares the number of APIs that need to be

tracked and implemented by Sprinter versus a lightweight

browser designed for crawling. Across the four versions,

a lightweight browser would be required to implement 18

APIs; in Chrome’s source, these APIs touch 278 files

(Chrome’s commit history only shows files added/modified,

not the number of lines of code). In contrast, Sprinter needs

to handle only 3 of these APIs, requiring 28 lines of code.

7 RELATED WORK

Scalable web crawling. The engineering issues associated

with web crawling are well studied [33, 58, 19, 37, 22, 23].

Some of these crawlers [37, 23, 22] are able to achieve a

crawling throughput of upwards of 1000 pages per server.

However, all of these crawlers only download the HTML file

for every page URL. In contrast, Sprinter downloads all the

resources which would be fetched by browser-based crawlers

such as Archivebox [2], Brozzler [5], and Browsertrix [4].

Incremental crawling A large amount of prior work [27,

39, 25, 52] has focused on incremental web crawling, i.e.,

how to efficiently recrawl pages. These techniques are help-

ful only when the same set of pages are crawled multiple

times. Sprinter, on the other hand, eliminates redundant

computations across pages even within a single crawl.

Resource bottlenecks of large-scale distributed systems.

Prior work has studied the bottlenecks in scaling various dis-

tributed data processing workloads such as sorting [45], data

analytics [43], and distributed deep learning [54, 48, 20].

These efforts first identify the hardware resource (CPU,

GPU, network, or disk) that constrains overall performance,

and then propose solutions to optimize the utilization of that

resource. To the best of our knowledge, we are the first to

study the compute bottleneck in browser-based web crawl-

ing and propose a solution to reduce its impact.

Web performance optimization. The negative impact

of a web browser’s computations on user-perceived latency

while loading web pages is well-known [55, 56]. As dis-

cussed earlier (§2.4), proposals to lower page load times

either do not reduce the total amount of computation that

web clients need to perform [41, 46, 40] or require server-

side changes [42, 57]. Sprinter is backward compatible with

the legacy web and reduces the total amount of client-side

processing by memoizing and reusing computations across

pages on the same site.

Compute memoization. Memoization is widely used

across different kinds of application. Prior work has lever-

aged such techniques to reduce compile-time latency [51,

34], improve runtime performance [30, 53], minimize

scheduling overheads [26], and enable faster auditing of web

applications [35]. Sprinter uses similar memoization tech-

niques to reduce the amount of client-side computation re-

quired to crawl pages, and it maximizes its benefits by selec-

tively identifying the state that influences URL fetches.

8 CONCLUSION

Over the years, crawling web pages with high fidelity has

evolved from a workload that is limited by network band-

width to a CPU-intensive one. In this paper, we showed that

the key to mitigating this new bottleneck is to strategically

minimize the use of the web browser and its execution of

JavaScripts. Our design of Sprinter does so by efficiently

identifying and exploiting opportunities to safely reuse the

browser’s computations across the pages on any site. We

hope that our work will spur a new wave of innovation in

scalable web crawling, a task that underlies many important

systems in today’s society.

REFERENCES

[1] Amazon silk. https://docs.aws.amazon.com/silk/

latest/developerguide/what-is-silk.html.

[2] Archivebox. https://github.com/ArchiveBox/

ArchiveBox.

[3] Babel. https://babeljs.io/.

[4] Browsertrix crawler. https://github.com/

webrecorder/browsertrix-crawler.

[5] Brozzler. https://github.com/internetarchive/

brozzler.

[6] Cascadia. https://github.com/andybalholm/

cascadia.

[7] Chrome cpu profiler. https://developer.chrome.com/

docs/devtools/performance//.

[8] Chrome devtools protocol. https://chromedevtools.

github.io/devtools-protocol/.

[9] Chrome web page replay. https://chromium.

googlesource.com/catapult/+/HEAD/web page

replay go/README.md.

[10] Common crawl. https://commoncrawl.org/.

[11] CSS selectors. https://developer.mozilla.org/en-US/

docs/Web/CSS/CSS Selectors.

[12] Gnu wget2. https://github.com/rockdaboot/wget2.

[13] Goquery. https://github.com/PuerkitoBio/goquery.

[14] Internet archive end of term 2020 web crawls. https:

//archive.org/details/EndOfTerm2020WebCrawls.

[15] Optional chaining. https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Operators/

Optional chaining.

[16] Puppeteer. https://pptr.dev/.

[17] Using media queries. https://developer.mozilla.

org/en-US/docs/Web/CSS/Media Queries/

Using media queries.

[18] Web APIs. https://caniuse.com/?compare=

chrome+114,firefox+113&compareCats=all.

[19] F. Ahmadi-Abkenari and A. Selamat. An architecture

for a focused trend parallel web crawler with the appli-

cation of clickstream analysis. Information Sciences,

2012.

[20] T. Akiba, K. Fukuda, and S. Suzuki. Chainermn:

Scalable distributed deep learning framework. arXiv

preprint arXiv:1710.11351, 2017.

[21] A. S. Bale, N. Ghorpade, S. Rohith, S. Kamalesh,

R. Rohith, and B. Rohan. Web scraping approaches and

their performance on modern websites. In International

Conference on Electronics and Sustainable Communi-

cation Systems, 2022.

[22] P. Boldi, B. Codenotti, M. Santini, and S. Vigna. Ubi-

crawler: A scalable fully distributed web crawler. Soft-

ware: Practice and Experience, 2004.

[23] P. Boldi, A. Marino, M. Santini, and S. Vigna. Bubing:

Massive crawling for the masses. ACM Transactions

on the Web, 2018.

[24] M. Butkiewicz, D. Wang, Z. Wu, H. V. Madhyastha,

and V. Sekar. Klotski: Reprioritizing web content to

improve user experience on mobile devices. In NSDI,

2015.

[25] J. Cho and H. Garcia-Molina. The evolution of the web

and implications for an incremental crawler. In VLDB,

2000.

[26] H. Cui, J. Wu, C.-C. Tsai, and J. Yang. Stable determin-

istic multithreading through schedule memoization. In

OSDI, 2010.

[27] J. Edwards, K. McCurley, and J. Tomlin. An adaptive

model for optimizing performance of an incremental

web crawler. In WWW, 2001.

[28] M. Erdélyi, A. A. Benczúr, J. Masanés, and D. Siklósi.

Web spam filtering in internet archives. In Interna-

tional Workshop on Adversarial Information Retrieval

on the Web, 2009.

[29] U. Feige. A threshold of ln n for approximating set

cover. Journal of the ACM, 1998.

[30] A. Goel, V. Ruamviboonsuk, R. Netravali, and H. V.

Madhyastha. Rethinking client-side caching for the

mobile web. In HotMobile, 2021.

[31] A. Goel, J. Zhu, R. Netravali, and H. V. Madhyastha.

Jawa: Web archival in the era of JavaScript. In OSDI,

2022.

[32] G. Gossen, E. Demidova, and T. Risse. ICrawl: Im-

proving the freshness of web collections by integrating

social web and focused web crawling. In JCDL, 2015.

[33] A. Heydon and M. Najork. Mercator: A scalable, ex-

tensible web crawler. In WWW, 1999.

[34] M. Johnson. Memoization of top down parsing. arXiv

preprint cmp-lg/9504016, 1995.

[35] T. Kim, R. Chandra, and N. Zeldovich. Efficient patch-

based auditing for web application vulnerabilities. In

OSDI, 2012.

[36] R. Ko, J. Mickens, B. Loring, and R. Netravali.

Oblique: Accelerating page loads using symbolic ex-

ecution. In NSDI, 2021.

[37] H.-T. Lee, D. Leonard, X. Wang, and D. Loguinov. Irl-

bot: scaling to 6 billion pages and beyond. ACM Trans-

actions on the Web, 2009.

[38] J. Li, Y. Xiong, X. Liu, and L. Zhang. How does web

service API evolution affect clients? In IEEE Interna-

tional Conference on Web Services, 2013.

[39] G. S. Manku, A. Jain, and A. Das Sarma. Detecting

near-duplicates for web crawling. In WWW, 2007.

[40] S. Mardani, A. Goel, R. Ko, H. Madhyastha, and R. Ne-

travali. Horcrux: Automatic javascript parallelism for

resource-efficient web computation. In OSDI, 2021.

[41] R. Netravali, A. Goyal, J. Mickens, and H. Balakrish-

nan. Polaris: Faster page loads using fine-grained de-

pendency tracking. In NSDI, 2016.

[42] R. Netravali and J. Mickens. Prophecy: Accelerating

mobile page loads using final-state write logs. In NSDI,

2018.

https://docs.aws.amazon.com/silk/latest/developerguide/what-is-silk.html
https://docs.aws.amazon.com/silk/latest/developerguide/what-is-silk.html
https://github.com/ArchiveBox/ArchiveBox
https://github.com/ArchiveBox/ArchiveBox
https://babeljs.io/
https://github.com/webrecorder/browsertrix-crawler
https://github.com/webrecorder/browsertrix-crawler
https://github.com/internetarchive/brozzler
https://github.com/internetarchive/brozzler
https://github.com/andybalholm/cascadia
https://github.com/andybalholm/cascadia
https://developer.chrome.com/docs/devtools/performance//
https://developer.chrome.com/docs/devtools/performance//
https://chromedevtools.github.io/devtools-protocol/
https://chromedevtools.github.io/devtools-protocol/
https://chromium.googlesource.com/catapult/+/HEAD/web_page_replay_go/README.md
https://chromium.googlesource.com/catapult/+/HEAD/web_page_replay_go/README.md
https://chromium.googlesource.com/catapult/+/HEAD/web_page_replay_go/README.md
https://commoncrawl.org/
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://github.com/rockdaboot/wget2
https://github.com/PuerkitoBio/goquery
https://archive.org/details/EndOfTerm2020WebCrawls
https://archive.org/details/EndOfTerm2020WebCrawls
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Optional_chaining
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Optional_chaining
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Optional_chaining
https://pptr.dev/
https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries/Using_media_queries
https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries/Using_media_queries
https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries/Using_media_queries
https://caniuse.com/?compare=chrome+114,firefox+113&compareCats=all
https://caniuse.com/?compare=chrome+114,firefox+113&compareCats=all

[43] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and

B.-G. Chun. Making sense of performance in data an-

alytics frameworks. In NSDI, 2015.

[44] X. Pan, Y. Cao, S. Liu, Y. Zhou, Y. Chen, and T. Zhou.

CSPAutoGen: Black-box enforcement of content secu-

rity policy upon real-world websites. In CCS, 2016.

[45] A. Rasmussen, G. Porter, M. Conley, H. V. Mad-

hyastha, R. N. Mysore, A. Pucher, and A. Vahdat. Tri-

tonsort: A balanced large-scale sorting system. In

NSDI, 2011.

[46] V. Ruamviboonsuk, R. Netravali, M. Uluyol, and H. V.

Madhyastha. Vroom: Accelerating the Mobile Web

with Server-Aided Dependency Resolution. In SIG-

COMM, 2017.

[47] P. Saxena, R. Sekar, and V. Puranik. Efficient fine-

grained binary instrumentation with applications to

taint-tracking. In CGO, 2008.

[48] A. Sergeev and M. Del Balso. Horovod: fast and easy

distributed deep learning in tensorflow. arXiv preprint

arXiv:1802.05799, 2018.

[49] S. M. Shariff, H. Li, C.-P. Bezemer, A. E. Hassan, T. H.

Nguyen, and P. Flora. Improving the testing efficiency

of selenium-based load tests. In International Work-

shop on Automation of Software Test, 2019.

[50] P. Slavı́k. A tight analysis of the greedy algorithm for

set cover. In STOC, 1996.

[51] A. Suresh, E. Rohou, and A. Seznec. Compile-time

function memoization. In International Conference on

Compiler Construction, 2017.

[52] Q. Tan and P. Mitra. Clustering-based incremental web

crawling. ACM Trans. Inf. Syst., 2010.

[53] Y. Tang and J. Yang. Secure deduplication of general

computations. In USENIX ATC, 2015.

[54] C. Unger, Z. Jia, W. Wu, S. Lin, M. Baines, C. E. Q.

Narvaez, V. Ramakrishnaiah, N. Prajapati, P. Mc-

Cormick, J. Mohd-Yusof, et al. Unity: Accelerating

{DNN} training through joint optimization of algebraic

transformations and parallelization. In OSDI, 2022.

[55] X. S. Wang, A. Balasubramanian, A. Krishnamurthy,

and D. Wetherall. Demystifying page load performance

with wprof. In NSDI, 2013.

[56] X. S. Wang, A. Balasubramanian, A. Krishnamurthy,

and D. Wetherall. How speedy is SPDY? In NSDI,

2014.

[57] X. S. Wang, A. Krishnamurthy, and D. Wetherall.

Speeding up web page loads with Shandian. In NSDI,

2016.

[58] Q. Zheng, Z. Wu, X. Cheng, L. Jiang, and J. Liu. Learn-

ing to crawl deep web. Information Systems, 2013.

	Introduction
	Background and Motivation
	Target workloads
	Shortcomings of static crawling
	Compute overheads of browser-based crawling
	Minimizing browser's computation delays

	Overview
	Observations and approach
	Challenges

	Design
	Memoizing JavaScript execution
	Statically crawling pages
	Scheduling page crawls

	Implementation
	Evaluation
	Evaluation setup
	Throughput and Fidelity
	Comparison with baselines
	Throughput in each phase
	Contribution of techniques

	Sensitivity to crawling parameters
	Number of pages per site
	Repeated crawling
	Preserving static fetches

	Maintainability

	Related work
	Conclusion

